extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C14).1C23 = C2×D4⋊2D7 | φ: C23/C2 → C22 ⊆ Aut C2×C14 | 112 | | (C2xC14).1C2^3 | 224,179 |
(C2×C14).2C23 = D4⋊6D14 | φ: C23/C2 → C22 ⊆ Aut C2×C14 | 56 | 4 | (C2xC14).2C2^3 | 224,180 |
(C2×C14).3C23 = D7×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C2×C14 | 56 | 4 | (C2xC14).3C2^3 | 224,184 |
(C2×C14).4C23 = D4⋊8D14 | φ: C23/C2 → C22 ⊆ Aut C2×C14 | 56 | 4+ | (C2xC14).4C2^3 | 224,185 |
(C2×C14).5C23 = D4.10D14 | φ: C23/C2 → C22 ⊆ Aut C2×C14 | 112 | 4- | (C2xC14).5C2^3 | 224,186 |
(C2×C14).6C23 = C14×C4○D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).6C2^3 | 224,192 |
(C2×C14).7C23 = C7×2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 56 | 4 | (C2xC14).7C2^3 | 224,193 |
(C2×C14).8C23 = C7×2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | 4 | (C2xC14).8C2^3 | 224,194 |
(C2×C14).9C23 = C4×Dic14 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).9C2^3 | 224,63 |
(C2×C14).10C23 = C28⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).10C2^3 | 224,64 |
(C2×C14).11C23 = C28.6Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).11C2^3 | 224,65 |
(C2×C14).12C23 = D7×C42 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).12C2^3 | 224,66 |
(C2×C14).13C23 = C42⋊D7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).13C2^3 | 224,67 |
(C2×C14).14C23 = C4×D28 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).14C2^3 | 224,68 |
(C2×C14).15C23 = C28⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).15C2^3 | 224,69 |
(C2×C14).16C23 = C4.D28 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).16C2^3 | 224,70 |
(C2×C14).17C23 = C42⋊2D7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).17C2^3 | 224,71 |
(C2×C14).18C23 = C23.11D14 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).18C2^3 | 224,72 |
(C2×C14).19C23 = C22⋊Dic14 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).19C2^3 | 224,73 |
(C2×C14).20C23 = C23.D14 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).20C2^3 | 224,74 |
(C2×C14).21C23 = D7×C22⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 56 | | (C2xC14).21C2^3 | 224,75 |
(C2×C14).22C23 = Dic7⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).22C2^3 | 224,76 |
(C2×C14).23C23 = C22⋊D28 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 56 | | (C2xC14).23C2^3 | 224,77 |
(C2×C14).24C23 = D14.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).24C2^3 | 224,78 |
(C2×C14).25C23 = D14⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).25C2^3 | 224,79 |
(C2×C14).26C23 = Dic7.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).26C2^3 | 224,80 |
(C2×C14).27C23 = C22.D28 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).27C2^3 | 224,81 |
(C2×C14).28C23 = Dic7⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).28C2^3 | 224,82 |
(C2×C14).29C23 = C28⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).29C2^3 | 224,83 |
(C2×C14).30C23 = Dic7.Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).30C2^3 | 224,84 |
(C2×C14).31C23 = C28.3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).31C2^3 | 224,85 |
(C2×C14).32C23 = D7×C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).32C2^3 | 224,86 |
(C2×C14).33C23 = C4⋊C4⋊7D7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).33C2^3 | 224,87 |
(C2×C14).34C23 = D28⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).34C2^3 | 224,88 |
(C2×C14).35C23 = D14.5D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).35C2^3 | 224,89 |
(C2×C14).36C23 = C4⋊D28 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).36C2^3 | 224,90 |
(C2×C14).37C23 = D14⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).37C2^3 | 224,91 |
(C2×C14).38C23 = D14⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).38C2^3 | 224,92 |
(C2×C14).39C23 = C4⋊C4⋊D7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).39C2^3 | 224,93 |
(C2×C14).40C23 = C2×C4×Dic7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).40C2^3 | 224,117 |
(C2×C14).41C23 = C2×Dic7⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).41C2^3 | 224,118 |
(C2×C14).42C23 = C28.48D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).42C2^3 | 224,119 |
(C2×C14).43C23 = C2×C4⋊Dic7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).43C2^3 | 224,120 |
(C2×C14).44C23 = C23.21D14 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).44C2^3 | 224,121 |
(C2×C14).45C23 = C2×D14⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).45C2^3 | 224,122 |
(C2×C14).46C23 = C4×C7⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).46C2^3 | 224,123 |
(C2×C14).47C23 = C23.23D14 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).47C2^3 | 224,124 |
(C2×C14).48C23 = C28⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).48C2^3 | 224,125 |
(C2×C14).49C23 = D4×Dic7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).49C2^3 | 224,129 |
(C2×C14).50C23 = C23.18D14 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).50C2^3 | 224,130 |
(C2×C14).51C23 = C28.17D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).51C2^3 | 224,131 |
(C2×C14).52C23 = C23⋊D14 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 56 | | (C2xC14).52C2^3 | 224,132 |
(C2×C14).53C23 = C28⋊2D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).53C2^3 | 224,133 |
(C2×C14).54C23 = Dic7⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).54C2^3 | 224,134 |
(C2×C14).55C23 = C28⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).55C2^3 | 224,135 |
(C2×C14).56C23 = Dic7⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).56C2^3 | 224,139 |
(C2×C14).57C23 = Q8×Dic7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).57C2^3 | 224,140 |
(C2×C14).58C23 = D14⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).58C2^3 | 224,141 |
(C2×C14).59C23 = C28.23D4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).59C2^3 | 224,142 |
(C2×C14).60C23 = C2×C23.D7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).60C2^3 | 224,147 |
(C2×C14).61C23 = C24⋊D7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 56 | | (C2xC14).61C2^3 | 224,148 |
(C2×C14).62C23 = C22×Dic14 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).62C2^3 | 224,174 |
(C2×C14).63C23 = D7×C22×C4 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).63C2^3 | 224,175 |
(C2×C14).64C23 = C22×D28 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).64C2^3 | 224,176 |
(C2×C14).65C23 = C2×C4○D28 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).65C2^3 | 224,177 |
(C2×C14).66C23 = C2×Q8×D7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).66C2^3 | 224,181 |
(C2×C14).67C23 = C2×Q8⋊2D7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | | (C2xC14).67C2^3 | 224,182 |
(C2×C14).68C23 = Q8.10D14 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 112 | 4 | (C2xC14).68C2^3 | 224,183 |
(C2×C14).69C23 = C23×Dic7 | φ: C23/C22 → C2 ⊆ Aut C2×C14 | 224 | | (C2xC14).69C2^3 | 224,187 |
(C2×C14).70C23 = C14×C22⋊C4 | central extension (φ=1) | 112 | | (C2xC14).70C2^3 | 224,150 |
(C2×C14).71C23 = C14×C4⋊C4 | central extension (φ=1) | 224 | | (C2xC14).71C2^3 | 224,151 |
(C2×C14).72C23 = C7×C42⋊C2 | central extension (φ=1) | 112 | | (C2xC14).72C2^3 | 224,152 |
(C2×C14).73C23 = D4×C28 | central extension (φ=1) | 112 | | (C2xC14).73C2^3 | 224,153 |
(C2×C14).74C23 = Q8×C28 | central extension (φ=1) | 224 | | (C2xC14).74C2^3 | 224,154 |
(C2×C14).75C23 = C7×C22≀C2 | central extension (φ=1) | 56 | | (C2xC14).75C2^3 | 224,155 |
(C2×C14).76C23 = C7×C4⋊D4 | central extension (φ=1) | 112 | | (C2xC14).76C2^3 | 224,156 |
(C2×C14).77C23 = C7×C22⋊Q8 | central extension (φ=1) | 112 | | (C2xC14).77C2^3 | 224,157 |
(C2×C14).78C23 = C7×C22.D4 | central extension (φ=1) | 112 | | (C2xC14).78C2^3 | 224,158 |
(C2×C14).79C23 = C7×C4.4D4 | central extension (φ=1) | 112 | | (C2xC14).79C2^3 | 224,159 |
(C2×C14).80C23 = C7×C42.C2 | central extension (φ=1) | 224 | | (C2xC14).80C2^3 | 224,160 |
(C2×C14).81C23 = C7×C42⋊2C2 | central extension (φ=1) | 112 | | (C2xC14).81C2^3 | 224,161 |
(C2×C14).82C23 = C7×C4⋊1D4 | central extension (φ=1) | 112 | | (C2xC14).82C2^3 | 224,162 |
(C2×C14).83C23 = C7×C4⋊Q8 | central extension (φ=1) | 224 | | (C2xC14).83C2^3 | 224,163 |
(C2×C14).84C23 = Q8×C2×C14 | central extension (φ=1) | 224 | | (C2xC14).84C2^3 | 224,191 |